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Centre de Physique Théoriqueb, C.N.R.S. Luminy, case 907, F–13288 Marseille, France (e–mail: hasler@cpt.univ-mrs.fr)

Received: 16 April 1997

Abstract. We present an N = 2 multiplet including a three–index antisymmetric tensor gauge potential,
and describe it as a solution to the Bianchi identities for the associated fieldstrength superform, subject
to some covariant constraints, in extended central charge superspace. We find that this solution is given
in terms of an 8 + 8 tensor multiplet subject to an additional constraint. We give the transformation laws
for the multiplet as well as invariant superfield and component field lagrangians, and mention possible
couplings to other multiplets. We also allude to the relevance of the 3–form geometry for generic invariant
supergravity actions.

1 Introduction

Although N = 2 supersymmetric theories are not yet di-
rectly related to the observable world (at least in what
concerns particle physics), they started playing an impor-
tant role in modern theoretical physics in recent years.
This is in particular due to the fact that they yield the
first exactly solvable models in four dimensional field the-
ories, in spite of the rich physics they display, including
also non–perturbative phenomena [1].
In this paper, we discuss an N = 2 supermultiplet includ-
ing a three–index antisymmetric tensor gauge potential.
This multiplet will play a crucial role in various scenar-
ios related to supersymmetry breaking, in analogy to the
case in N = 1: For instance a gaugino condensate is as-
sociated, from a geometrical point of view, to the deriva-
tive dQ = trF2 of the Yang–Mills Chern–Simons form
Q = tr(AF − 1

3 A3), which is just a special case of a three–
form potential. Similarily, curvature squared terms, which
seem to be involved in another recently discussed super-
symmetry breaking mechanism [2], are associated in the
same way to the gravitational Chern–Simons forms. For
N = 1, the three–form multiplet has been known for some
time [3], and recently a rather complete description of its
couplings to the N = 1 supergravity–matter system has
been given [4].
However, to our knowledge, the corresponding N = 2 mul-
tiplet has not yet been constructed. It is the purpose of
the present paper to fill this gap: First, we discuss the
field content and the supersymmetry transformations on
the level of component fields, and give an invariant la-
grangian density for the multiplet. Then, we turn to a
geometric description of the multiplet as fieldstrength of
a three–form gauge potential in extended superspace. We
find that this solution is given in terms of an 8 + 8 tensor
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multiplet [5] (“linear superfield”) subject to an additional
constraint1 similar to the case in N = 1. We also give the
geometrical interpretation of the previously defined super-
symmetry transformations. Finally, we give chiral super-
field lagrangians, comment on the dynamics of this mul-
tiplet in various contexts, and mention possible couplings
to N = 2 supergravity and to other multiplets. We also
indicate the relevance of the three–form geometry for the
construction of generic invariant actions.
Our spinor notations are those of Wess and Bagger [7], and
concerning the internal structure group of N = 2 super-
space, we adopted the conventions of [8]: In particular, we
raise and lower internal SU(2)–indices from the left by the
antisymmetric tensors εBA and εBA with ε12 = ε21 = 1.

2 The three–form multiplet

The set of fields that we will call the three–form multi-
plet Σ in the sequel consists of a three–index gauge po-
tential C`mn(x), another two–index antisymmetric tensor
Smn(x), an isotriplet of real scalar fields which we write
as traceless, hermitean 2×2–matrix ZB

A(x), as well as an
isodoublet of Weyl spinors ζA

α (x), ζ̄α̇
A(x) and a real scalar

auxiliary field H(x):

Σ ∼ (
C`mn, Smn, ZB

A; ζA
α , ζ̄α̇

A | H
)

. (1)

The field tensors

Z̃m = 1
2

εmnk`∂nSk` , Σ̃ = −∂mC̃m (2)

(where Ck`m = εk`mnC̃n etc.) are invariant under the
gauge transformations

1 Another “extra–constrained” hypermultiplet seems to be
known, but it is apparently impossible to write an action for
this multiplet [6]
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δSmn = −∂mβn + ∂nβm
(3)

δC̃m = −1
2

εmnk`∂nγk` .

We define the following supersymmetry transformations
of spinorial parameters ξα

A and ξ̄A
α̇ for the multiplet:

δSmn = 2
(
ξAσmnζA + ξ̄Aσ̄mnζ̄A

)
,

δC`mn = ε`mnk

(
ξAσk ζ̄A + ξ̄Aσ̄kζA

)
,

δZBA =
BA∑ (

ξBζA + ξ̄B ζ̄A
)

,
(4)

δζA
α = ξA

α

(
i ∂mC̃m − H

)
+

(
i ∂mZA

B − δA
B Z̃m

)
(σmξ̄)B

α ,

δζ̄α̇
A = ξ̄α̇

A

(
i ∂mC̃m + H

)
+

(
i ∂mZB

A + δB
A Z̃m

)
(σ̄mξ)α̇

B ,

δH = i ξA6∂ζ̄A − i ξ̄A6 ∂̄ζA .

One can verify that these transformations close on the
multiplet: The commutator [δ2, δ1] of two supersymmetry
transformations of parameters ξi yields a spacetime trans-
lation of parameter

ξm = 2i
(
ξ2AσmξA

1 + ξ̄A
2 σ̄mξ1A

)
(5)

on all fields of the multiplet, plus gauge transformations
with field dependent parameters for the potentials, ex-
plicitely

βm = ξnSnm + 2i
(
ξ2Aσmξ̄B

1 + ξ̄B
2 σ̄mξ1A

)
ZA

B (6)

and

γmn = ξ`C`mn + 2
(
ξ2AξA

1 − ξ̄A
2 ξ̄1A

)
Smn

+4
(
ξ2AσmnξB

1 − ξ̄B
2 σ̄mnξ̄1A

)
ZA

B . (7)

The geometric interpretation of these terms will be given
later in this paper.
An invariant kinetic action for this multiplet is provided
by the lagrangian density

Lkin = 1
2 H2 + 1

2 (∂mC̃m)2 + 1
2 Z̃mZ̃m

(8)
− 1

4 ∂mZA
B ∂mZB

A − i
2 ζA

↔
6∂ ζ̄A .

It should be noted here that C`mn does not propagate
physical degrees of freedom. On–shell, the above action
describes the same 4+4 physical states as the usual tensor
multiplet [5], the 4 physical spin–0 degrees of freedom be-
ing given by the triplet of scalars and the antisymmetric
tensor.
Thus, in analogy to the case of the N = 1 three–form
multiplet [3], the pseudoscalar auxiliary field of the usual
matter multiplet is replaced by the fieldstrength of the
three–form potential.

Actually, the multiplet can be decomposed into one N = 1
three–form multiplet and one N = 1 antisymmetric tensor
multiplet [9]: This is done by writing

ZB
A ∼

(
L T
T −L

)
, L = L† (9)

and splitting up the N = 2 multiplet into the two N = 1
multiplets

Σ ; ( L, Smn; ζ1
α, ζ̄α̇

1 )
(10)

+ ( T, T , C`mn; ζ2
α, ζ̄α̇

2 | H ) .

Then, the supersymmetry transformations of parameter
ξ1
α, ξ̄α̇

1 correspond to the usual N = 1 transformations
of these two multiplets, while the parameters ξ2

α, ξ̄α̇
2 mix

them in a nontrivial way. We shall reconsider this issue on
the level of superfields after the discussion of the super-
space Bianchi identities in the following section.

3 Superspace geometry and Bianchi identities

We find that the previously introduced multiplet can be
described as the components of the fieldstrength tensor
Σ = dC of a three–form potential in extended N = 2
superspace. We include an additional bosonic coordinate
z, z̄ which allows for the description of a supersymmetry
algebra including a central charge [10]. Thus, we consider
torsion TA = dEA (A ∼ a, α

A, A
α̇ , z, z̄) with the following

nonzero elements:

TCB z
γ β = 2i εCB εγβ , T γ̇ β̇ z̄

CB = 2i εCB εγ̇β̇ , (11)

and, as usual,

TC β̇ a
γ B = 2i δC

B (σa)γ
β̇ . (12)

By Poincaré’s lemma dd = 0, they define the commutators(DC ,DB
)

= −T CBADA . (13)

However, the superfields of the multiplet described here,
as well as the gauge parameters, are taken independent of
z, z̄,

∂zCCBA = 0 , ∂z̄CCBA = 0 , (14)

i.e., the central charge is acting trivially on the multiplet.
Furthermore, we impose the covariant constraints

ΣδγβA = 0 , Σδγ zz̄ = 0 ,
(

δ ∼ D
δ , δ̇

D

)
(15)

and

Σ B α̇
z c β A = 2σc β

α̇ ZB
A , Σ B α̇

z̄ c β A = −2 σc β
α̇ ZB

A

(16)
on the fieldstrength2.

2 The latter constraint should be considered as reality condi-
tion on ZB

A. An antihermitean part of ZB
A would just enlarge

the field content of the multiplet by another 8+8 off–shell de-
grees of freedom
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Then the Bianchi identities dΣ = 0, or

EAEBECEDEE(DEΣDCBA + 2 T EDFΣFCBA
)

= 0 , (17)

give all other elements of ΣDCBA in terms of ZB
A and its

derivatives: First, the identities with indices zz̄ imply

Σzz̄ BA = 0 . (18)

(These identities are just the Bianchi identities for a Yang–
Mills fieldstrength FBA in ordinary N = 2 superspace
without the z–coordinates [11], with the Yang–Mills su-
perfields occuring in Fβα set to zero.)
Next, the identities with one index z correspond to the
Bianchi identities dZ = 0 for

ZCBA ≡ iΣz CBA (19)

such that Z = dS for some 2–form S, which is readily
identified3 as

SBA = −i Cz BA . (20)

These identities imply [12]

ZA
A = 0 , D(C

γ ZBA) = 0 = Dγ̇

(CZBA) , (21)

and give

Z A
cb α = 2 (σcbζ)A

α , Z α̇
cb A = 2 (σ̄cbζ̄)α̇

A , (22)

with
ζA
α = 1

3 DB
α ZA

B , ζ̄α̇
A = 1

3 Dα̇

BZB
A , (23)

and finally

Zcba = 1
8 εdcba (σd)α

α̇

(
DA

α ζ̄α̇
A − Dα̇

AζA
α

)
. (24)

As usual, the “reduced identities” (21) already imply that
εdcba∂dZcba = 0.
Then, the other components of dΣ = 0 determine the
components of Σ without z, z̄ indices to be

Σ BA
dc β α = −4 (σdc)βαZBA ,

(25)
Σ β̇ α̇

dc BA = 4 (σ̄dc)β̇α̇ZBA ,

and

Σ A
dcb α = −εdcba (σaζ̄)A

α ,
(26)

Σ α̇
dcb A = −εdcba (σ̄aζ)α̇

A ,

where we chose to adopt the additional constraint Σ B α̇
dc β A

= 0 which turns out to be conventional, i.e. just corre-
sponds to a shift of the potential C`mn by the trace of

3 To be precise, from the reality condition (16) follows that
Σz CBA = −Σz̄ CBA, such that S′

BA = i Cz̄ BA has the same
fieldstrength Z and therefore describes the same physical ob-
ject. (Roughly speaking, S′

BA and SBA differ at most by a gauge
transformation.)

this fieldstrength component. Finally, the vectorial field-
strength is given by

Σdcba = εdcbaΣ̃ ,
(27)

Σ̃ = i

8

(Dα
AζA

α + DA
α̇ ζ̄α̇

A

)
.

On the other hand, one infers of course from the explicit
definition of Σ = dC that

Σ̃ = − 1
6 εdcba ∂dCcba , (28)

therefore the above result should be seen as an additional
constraint on the superfield ZB

A, requiring the imaginary
part of its highest component to be a total derivative,(

Dα
BDA

α + DA

α̇Dα̇

B

)
ZB

A = ∂d

(
4i εdcbaCcba

)
. (29)

This concludes the analysis of the Bianchi identities; no
other restrictions on ZB

A are found. Note that we actu-
ally used here the same symbols for the superfields than
for their lowest components which are precisely the fields
presented in the preceding section. For convenience, we
summarize their definitions here once again, denoting the
projection on θ = 0 as usual by a vertical bar:

ZB
A(x) = ZB

A | , Smn(x) = −i Cz mn | , (30)

ζA
α (x) = 1

3
DB

α ZA
B | , ζ̄α̇

A(x) = 1
3

Dα̇

BZB
A | , (31)

Z̃m(x) = 1
2

εmnk` ∂nSk`(x)

= 1
24

(σm)α
α̇

(
Dα̇

BDA
α − DA

α Dα̇

B

)
ZB

A | , (32)

Σ̃(x) = −1
6

εk`mn ∂kC`mn(x)

= i

24

(
Dα

BDA
α + DA

α̇Dα̇

B

)
ZB

A | , (33)

and there remains just one real scalar auxiliary field, de-
fined as

H(x) = 1
24

(
DA

α̇Dα̇

B − Dα
BDA

α

)
ZB

A | . (34)

Observe that the additional constraint (29) is analogous
to the case in N = 1: There, the three–form multiplet also
corresponds to (anti–)chiral superfields

D̄α̇T = 0 , DαT = 0 , (35)

satisfying the additional constraint

DαDαT − D̄α̇D̄α̇T ∝ εdcba∂dCcba . (36)

Considering the decomposition (9) of ZB
A, we find the

chirality constraints (35) on T from the constraints (21),
D(C

α ZBA) = 0, by setting all indices to one, while the
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linearity constraints on L and the additional constraint
on T , T are most easily recovered from the relations

DB
β ζA

α = −εBA εβα (H + i Σ̃)
(37)

Dβ̇

B ζ̄
α̇

A = εBA εβ̇α̇ (H − i Σ̃) ,

again by setting the internal index B of the spinorial deri-
vative to one.
To conclude this section, we now turn back to the previ-
ously introduced supersymmetry transformations. We de-
fine them to be superspace diffeomorphisms of parameter
ξA such that the vielbeins EA remain invariant, i.e.,

LξE
A ≡ (ιξ + d)2EA = 0

⇐⇒ DBξA = −ξCT CBA . (38)

This restricts the parameters to be xm and z, z̄–indepen-
dent, and the θ and θ̄–components of ξa and ξz to be given
in terms of ξα

A and ξ̄A
α̇ . We combine these diffeomorphisms

with a field dependent gauge transformation

δγC = −dγ with γ = ιξC (39)

in order to obtain the very simple transformation laws

δC = ιξΣ , δΣDCBA = ιξdΣDCBA . (40)

The relevant components of these formulae, or rather their
values for θ = 0, were given in the previous section. (We
take the lowest component of ξm and ξz to vanish for the
supersymmetry transformations; this is of course consis-
tent with the condition (38).)
One can show that the commutator [δ2, δ1] of two such
transformations yields again a transformation of the same
type, but of parameter

ξA = −ιξ2ιξ1T
A ≡ −ξB

2 ξC
1 T CBA (41)

plus a gauge transformation of parameter

γ = −ιξ2ιξ1Σ , (γ)BA = −ξC
2 ξD

1 ΣDCBA . (42)

Disentangeling furtherly, we can describe this combined
transformation also as a plain diffeomorphism of parame-
ter ξ plus a gauge transformation of parameter γ + ιξC,
which then yields the formulae given in the first section.

We also wish to comment on the piece in these transforma-
tions that stems from the z, z̄–component of the parameter
ξ: It actually has the form of something one could view
as a kind of “relic” central charge transformation, acting
nontrivially only on the three–form potential, which be-
comes shifted by the antisymmetric tensor’s fieldstrength,

δzCcba = ∆ · Zcba , ∆ = −i
(
ξz − ξ̄z̄

)
. (43)

However, according to the definition of Z = dS, this also
is nothing else than a gauge transformation, namely of
parameter γ = ∆ · S.

4 Superfield lagrangians

The previously given kinetic action for the three–form
multiplet can actually be obtained as the θ4 component
of a chiral superfield lagrangian as follows: First, we con-
sider an explicit solution to the constraints on Σ, namely
CzBA = i SBA, Cz̄BA = −i SBA, with

SBA
β α = 4 εBA εβαS , Sβ̇ α̇

BA = −4 εBA εβ̇α̇ S
(44)

SB α̇
β A = 0 .

Here, S and S are (anti–)chiral superfields, in terms of
which the fieldstrength multiplet is then given by

ZB
A = 1

4

(
Dϕ

ADB
ϕ S − DB

ϕ̇ Dϕ̇

AS
)

. (45)

(Note that S and S must derive from the same real pre-
potential, such that the imaginary part of their highest
component is indeed a total derivative ∼ ∂mC̃m.) Then,
the previously given kinetic action can be written as

Lkin = <e

∫
d4θ SZ , Z = −1

8
DA

ϕ̇Dϕ̇

BZB
A . (46)

(Here the chiral volume element is normalized such that∫
d4θ θ4 = 1.) Due to the constraints (21) on ZB

A, this
superfield Z is actually a vector superfield, and the above
lagrangian is indeed invariant under the gauge transfor-
mations of S [12].
We also want to mention that, given this explicit solution,
one can add a mass term

Lmass = m2
∫

d4θ S2 + h.c. (47)

which breaks the gauge invariance. (For the usual tensor
multiplet, this lagrangian has first been considered in [5]).
This yields a theory for a massive multiplet with twice the
number of physical fields: Lmass includes an explicit mass
term for a Dirac spinor made of ζA

α and mDA
α S|, and for

ZB
A and the antisymmetric tensor Smn. Moreover, an ad-

ditional triplet of bosons, XB
A ∼ m(Dϕ

ADB
ϕ S + DB

ϕ̇ Dϕ̇

AS),
appears as auxiliary fields. Finally, the diagonalization of
the fields H and Σ̃ yields a mass term for mS. However,
this is a slightly delicate point: In complete analogy with
the case in N = 1, one cannot “eliminate” Σ̃ = −∂mCm

directly, as it is not really an auxiliary field. Moreover,
its equation of motion only requires Σ̃ to be a constant,
but not to vanish. As one can see from the supersymme-
try transformations, a nonvanishing constant would give
rise to an inhomogeneous transformation law of the spinor
field, which seems to indicate broken supersymmetry. For
a more detailed discussion of these issues, see for example
[13].
We wish to mention that the above lagrangians, and even
a much larger class of N=2 invariant actions, find a nice
geometric interpretation within the 3–form geometry. Ac-
tually, for an arbitrary superfield LB

A satisfying

D(A
α LBC) = 0 , (∂z ∓ ∂z̄)LB

A = 0 , (48)
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we find that

L = −1
24

(
Dα

ADB
α ∓ D̄B

α̇ D̄α̇
A

)
LA

B (49)

leads to an invariant action; more precisely

δL = − i
3∂m

(
ξ̄Bσ̄mDA ∓ ξAσmD̄B

)
(LA

B − 1
2 δA

B LF
F ) .

(50)

The formula (49) applies not only to the case of z–indepen-
dent chiral lagrangians (LA

B = DADBX ∓ D̄AD̄BX with
D̄α̇

AX = 0), but can be used to obtain the lagrangians
for the Fayet–Sohnius hypermultiplet [14,10] with LA

B =
φ̄A(m − i

2

↔
∂ )φB and for the vector–tensor multiplet [15]

with LA
B = WAWB − W

A
WB .

The invariance of the lagrangian (49) finds a natural expli-
cation in the 3–form geometry: In fact, consider a 4–form
L = 1

4! EAEBECEDLDCBA which verifies dL = 0. Then,
a supergravity transformation gives

δL ≡ (ιξ + d)2L = dιξL , (51)

i.e., L transforms into a total derivative. Projecting on the
spacetime components, one finds thus that the lagrangian

L = e ∗L ≡ e
24

εk`mnLk`mn(x) (52)

(with e = det em
a) provides an invariant action, since it

transforms into

δL = ∂m

(
e
6

εk`mnξαLαk`n

)
. (53)

As we showed, the solution of dL = 0 subject to con-
straints (15) gives all components of L in terms of L Bα̇

z c βA

= 2i σcβ
α̇Lz

B
A and its derivatives. (Eq. (52) reduces in

the flat case to eqs. (49) resp. (33) for appropriate choices
of Lz

B
A). This provides therefore a generic method to

construct invariant lagrangians (52) from arbitrary “lin-
ear superfields” Lz

B
A. (An similar remark in the case of

N = 1 supergravity lagrangians has been made in [16].)
In view of the large amount of necessary definitions and
technicalities, we leave the details of the calculations in
N = 2 supergravity and a more elaborate discussion of
this issue to a separate publication.

5 Couplings to other multiplets

As the 3–form gauge multiplet is a special case of a ten-
sor multiplet, it allows for self–couplings and couplings
to other multiplets in the same way than they do. No-
tably one could consider the analogue of the action for
the improved tensor multiplet [17], which can be coupled
to a general N = 2 supergravity background [18]. For this
multiplet, one also can add a mass term involving only
the invariant fieldstrength multiplet. The massive three–
form multiplet should actually be of interest mainly in the
supergravity–coupled case.

On the other hand, another subject of special interest re-
lated to the three–form multiplet are of course couplings
to other gauge multiplets that can be formulated on geo-
metric grounds. In analogy to N = 1 [19,13] we consider,
for example, a modified field tensor

Σ = dC + κ H ∧ A (54)

where H = dB is the fieldstrength of a two–form potential
and A is a U(1) gauge potential. This gives rise to the
modified Bianchi Identity

dΣ = κ H ∧ F , F = dA , (55)

which yields in particular a modified fieldstrength Σ̃, in-
cluding the spinorial superpartners of Am and Bmn. This
leads to dynamics similar to the case in N = 1, with no-
tably quartic potential terms for the spinor fields, which
might again be of interest in the scenarios alluded to in
the introduction. These topics are still to be worked out
in detail and will be discussed elsewhere.
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